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a b s t r a c t

We present a novel particle method, combining remeshed Smoothed Particle Hydrody-
namics with Immersed Boundary and Level Set techniques for the simulation of flows past
complex deforming geometries. The present method retains the Lagrangian adaptivity of
particle methods and relies on the remeshing of particle locations in order to ensure the
accuracy of the method. In fact this remeshing step enables the introduction of Immersed
Boundary Techniques used in grid based methods. The method is applied to simulations of
flows of isothermal and compressible fluids past steady and unsteady solid boundaries that
are described using a particle Level Set formulation. The method is validated with two and
three-dimensional benchmark problems of flows past cylinders and spheres and it is
shown to be well suited to simulations of large scale simulations using tens of millions
of particles, on flow-structure interaction problems as they pertain to self-propelled
anguilliform swimmers.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The efficient and accurate simulation of fluid flows interacting with complex deforming geometries is of paramount
importance to a number of scientific fields ranging from virtual surgery to biofluid dynamics. These simulations require flow
solvers capable of handling accurately complex geometries and resolving efficiently the details of the flow field. In grid based
methods a number of techniques, have been developed to address such problems distinguished by their handling of the solid
geometry embedded in the flow field. Unstructured grid methods [15] are widely used techniques employing sets of grids
that adapt to the deformation of the boundary. The advantages of these methods relies on the accuracy of the flow solver
near boundaries and their flexibility in handling highly complex geometries. On the other hand, in particular for deforming
geometries, these methods require an additional computational cost for constructing the grid anew at each time step and
they are often associated with an additional computational overhead in solving the governing equations due to the non-uni-
formity of the associated mesh. Immersed Boundary Methods (IBM), pioneered by Peskin [39], use a straightforward bound-
ary representation along with structured grids to discretize flows past complex deforming geometries without constructing
the grid anew at each time step. In IBM the effects of the boundary are accounted for by introducing a forcing term on the
governing equations localized at the boundary of the body. These methods have attracted significant attention in recent
years for the simulation of complex flows in two and three-dimensions (see [34] and references therein).

Particle methods such as Vortex Methods (VM) and Smoothed Particle Hydrodynamics (SPH) are Lagrangian tech-
niques that are widely considered as being capable of handling flows past complex deforming geometries. In fact we
note that the original development of Immersed Boundary Methods was in the context of VMs [39] for the simulation
of heart leaflets at physiological Reynolds numbers. Building on the viscous VM introduced by Chorin [6], Peskin’s
. All rights reserved.
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pioneering simulations, coupled IBM and VM in an effort to use a minimal set of computational points to capture the
dynamics of the vorticity field in a complex deforming geometry. These simulations however were hindered at that time
by the quadratic cost of VMs and by the low accuracy associated with their treatment of viscous effects. Another issue,
hidden in the Lagrangian description of the flow, is the inaccuracy of particle methods when the flow distorts the com-
putational elements. The fact that VMs were able to provide reasonable estimates of force fields and flow structures (in
particular in 2D), but they were not capable of Direct Numerical Simulations of bluff body flows, detracted from their
original success. Recent works introducing a regularization of the particle locations have rekindled and interest in these
methods as being capable of performing Direct Numerical Simulations (see [29] and references therein), albeit only for
flows past relatively simple boundaries.

Contemporary to the inception of VMs [6,31], Lucy [33] and Gingold and Monaghan [17] introduced the method of
Smoothed Particle Hydrodynamics to discretize the velocity–pressure formulation of the compressible Navier–Stokes
equations. A key advantage of SPH is the avoidance of solving an elliptic problem to determine the velocity field of
the flow by introducing a state equation linking the pressure and the density field of the flow. Over the years a large
body of work has implemented SPH for simulations of flows ranging from astrophysics, to polymer dynamics (see the
review by Monaghan [36] and references therein). The SPH method is inherently adaptive as particle attributes (strength,
locations) evolve according to their material time derivatives. At the same time, the particle distortion, associated with
all Lagrangian particle methods, often leads to large inaccuracies of the quantities that are been simulated. In order to
circumvent this problem a consistent framework involving remeshing of particle locations using moment conserving
schemes was introduced in [30]. The moment conserving remeshing schemes developed in [27], were inspired in fact
by SPH interpolations [17], and they have been in turn applied in the context of SPH resulting in the method of re-
meshed SPH (rSPH) [5]. In the rSPH the particles are reinitialized (remeshing) on a regular grid and the new particle
strengths are adjusted so that the moments of the field quantities are conserved. We emphasize that the combination
of meshes and particle does not detract from the adaptive character of the method as the nonlinear convection term
is still described in a Lagrangian fashion. Care must be exercised however when remeshing near boundaries so as not
to introduce spurious structures while conserving the moments of the flow. This remeshing difficulty can be overcome
by combining Immersed Boundary Methods and the rSPH as shown in this work.

In IBM the effects of the boundary to the flow are accounted for by adding a forcing term to the governing equations
[40,42,41]. This forcing term is computed so as to enforce the no-slip boundary condition on the surface of the body. The
equations are usually discretized on an Eulerian grid which does not need to coincide with the location of the body and a
forcing term has to be computed on the grid nodes in the vicinity of the boundary. Fadlun et al. [14] proposed an IBM for
finite-difference methods where the velocity field for grid points near the boundary is interpolated linearly from values
at the boundary leading to a second order accuracy for the overall method. Kim [26] presented a similar approach for fi-
nite-volume methods combined with a mass source to increase the accuracy of the simulations.

These approaches have been so far mostly limited to Eulerian methods for incompressible flows. In the context of
particle methods recent works by Cottet and Maitre [10] and Morgenthal and Walther [37] combined VMs with im-
mersed interface and immersed boundary methods. Furthermore the IBM technique has been coupled with the Repro-
ducing Kernel Methods [49] while in [12] Immersed Boundary techniques were combined with Lattice Boltzmann
simulations.

In this work we present a novel particle Immersed Boundary method for simulations using remeshed Smoothed Particle
Hydrodynamics (rSPH-IB). The geometry of the body is described by Lagrangian particle level sets [21] and a forcing term is
evaluated on the boundary points such that the no-slip boundary condition on the body is fulfilled. The extrapolation of the
forcing term onto the neighboring particles employs a high-order B-Spline kernel. The method is applied to simulations of
flows of self-propelled anguiliform swimmers. In this flow-structure interaction problem the fluid forces are taken into ac-
count in order to determine the translation and rotation of the body. Anguilliform swimmers propel themselves by undula-
tions that propagate along the entire length of the body and their simulation requires the continuous adaptation of the
computational elements that describe the flow field. This is precisely the scope of the proposed method and we compare
our result with related simulations [25] employing finite volume discretisations.

The paper is organized as follows. First, we present the governing equations in Section 2 and discuss the particle repre-
sentation of Immersed Boundaries in Section 3. In Section 4, we demonstrate the performance of the rSPH-IB method on
Poiseuille flow, flow past a circular cylinder and sphere. We compare the characteristic numbers of the flow for various Rey-
nolds numbers with experimental and numerical results presented in the literature. Section 5 involves the simulation of
fluid-structure interactions describing a self-propelled swimmer. We conclude in Section 6 and discuss advantages and lim-
itations of the present approach and outline future work.

2. Governing equations

We consider the isothermal, compressible Navier–Stokes equations, described in a non-dimensional Lagrangian, velocity–
pressure framework as
Dq
Dt
¼ �qr � u; ð1Þ
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q
Du
Dt
¼ � 1

M2c
rpþ 1

Re
r � s; ð2Þ

sij ¼ l oui

oxj
þ ouj

oxi
� 2

3
dij

ouk

oxk

� �
ð3Þ
where D}
Dt ¼

o}
ot þ ðu � rÞð}Þ denotes the material derivative, q denotes the density, u the velocity, p the pressure, s the shear

stress tensor with the elements sij, xi are the components of the position, ui the components of the velocity where Einstein’s
summation convention must be taken into account. The Reynolds number Re of the flow is defined as
Re ¼ q0Ud
l

; ð4Þ
where q0 is the characteristic density of fluid, U the characteristic velocity, l the dynamic viscosity and d is the characteristic
length of the boundary. The Mach number M is the ratio of the characteristic velocity U to the speed of sound c0
M ¼ U
c0
¼ Uffiffiffiffiffiffiffiffi

RT0
p : ð5Þ
The system of differential equations Eqs. (1)–(3) is closed by introducing equation of state for an ideal gas
p ¼ qT ð6Þ
where T is the temperature. In the present work we assume the temperature T ¼ T0 to be constant in space and time.
The initial condition of the flow is described by a density and a velocity field. The no-slip boundary condition is translated

into a body force for the fluid in the vicinity of the body in the context of the immersed boundary technique. The inflow
boundary involves a prescribed inlet velocity and a homogenous Neumann boundary condition for the pressure. At the out-
let, we prescribe the pressure field and use a homogenous Neumann boundary condition for the velocity. Periodic boundary
conditions are employed in the remaining boundaries of the computational domain.

3. Re-meshed particle methods and immersed boundaries

3.1. Function and gradient approximations using particles

In the context of particle methods [18,8] a smooth approximation of a function UðxÞ is constructed by using a mollifica-
tion kernel f�ðxÞ:
U�ðxÞ ¼ UHf� ¼
Z

UðyÞf�ðx� yÞdy ð7Þ
where � denotes a characteristic length of the kernel.
The mollification accuracy of this kernel is of order r when the following moment conditions [8] are satisfied:
Z

f�ðxÞdx ¼ 1; ð8ÞZ
xif�ðxÞdx ¼ 0 if j i j6 r � 1; ð9ÞZ
j xjrf�ðxÞdx 61: ð10Þ
This mollified approximation U�ðxÞ is discretised using the particle locations as quadrature points and a particle approxima-
tion of the regularized function is
Uh
�ðxÞ ¼ Uh

Hf� ¼
XN

p¼1

vpUpf�ðx� xpÞ; ð11Þ
where xp, and vp denote the position and volume of the pth particle, and Up ¼ UðxpÞ the value at the p ¼ 1; � � � ;N particle
locations.

The error introduced by the quadrature of the mollified approximation of U can be distinguished in two parts [8] as
U�Uh
� ¼ ðU�UHf�Þ þ ðU�UhÞHf�: ð12Þ
The first term in Eq. (12) denotes the mollification error that can be controlled by appropriately selecting the kernel prop-
erties. The second term denotes the quadrature error due to the approximation of the integral on the particle locations. The
overall accuracy of the method [8] results in
kU�Uh
�k0;p 6 kU�U�k0;p þ kU� �Uh

�k0;p � Oð�rÞ þ O
hm

�m

� �
; ð13Þ
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where kð:Þk0;p ¼ ð
R
ð:ÞpdxÞ1=p and r denotes the order of the first non-vanishing moment of the kernel f� [8]. For equidistant

particle locations m ¼ 1 and for positive kernels such as the Gaussian, r ¼ 2. Here for f� a quartic spline kernel with second
order of accuracy is implemented
f�ðxÞ ¼ ndf� ¼ nd

s4

4 � 5s2

8 þ 115
192 0 6 s < 1

2 ; s ¼ jxj� ;
� s4

6 þ 5s3

6 � 5s2

4 þ 5s
24þ 55

96
1
2 6 s < 3

2 ;

ð2:5�sÞ4
24

3
2 6 s < 5

2 ;

0 s P 5
2 :

8>>>>><
>>>>>:

ð14Þ
The normalization value nd depends on the dimension of the problem and is computed as
nd ¼
1P

jvjf�ðx� xjÞ
ð15Þ
ensuring the property of partition of unity for the particles. Kernels of arbitrary order [1] are possible by giving up the pos-
itivity of the kernel function. Note that the moment conditions expressed by the integrals of the mollifier functions are not
often well represented in the case of discrete particle sets but the moment conditions can be ensured by appropriate nor-
malisations [8].

The error estimates reveal a very important fact for smooth particle approximations. In order to obtain accurate approx-
imations of the discretized quantities, smooth particles must overlap. This fact must be taken into account when considering
particle simulations with Lagrangian adaptivity as the flow map often results in distortion of the computational elements,
thus making the simulations inaccurate. This observation leads to the requirement for a regularization of the particle loca-
tions which in turn may seem as detracting from the adaptive character of the method. As it is noted below this is not the
case as the regularization of the particle locations can be achieved by introducing less error than that introduced by particle
mollification by appropriately conserving the moments of the flow field.

3.2. Remeshing

A key aspect of the present method involves the a remeshing procedure. In smooth particle methods, as discussed earlier,
particles must overlap at all times in order to guarantee the convergence of the method [9]. As it is shown in [7] remeshing is
equivalent to a regularisation of the advected quantities.

In this work remeshing is employed in order to regularize the distorted particle locations and to redistribute particle
quantities accordingly onto a uniform set of particles with the spacing h.

The redistribution of particle quantities is achieved using the 3rd order M04 kernel [28] which in one dimension is ex-
pressed as
M0
4ðx;hÞ ¼

1� 5s2

2 þ 3s3

2 0 6 s < 1; s ¼ jxjh
ð1�sÞð2�sÞ2

2 1 6 s < 2;
0 s P 2:

8>><
>>: ð16Þ
In higher dimensions the interpolation formulas are tensorial products of their one-dimensional counterparts. This reme-
shing kernel is used in order to redistribute on regularised particle locations the discretized extensive properties (here mass
and momentum) of the field that need to be conserved.

In the context of SPH, remeshing requires a normalization scheme of the remeshed quantities in terms of the
particle volumes. The normalization scheme is similar to the normalization that ensures the partition of unity
(Eq. (15)).
Uj;new ¼
VnewPNold

i¼1
VoldM04ðj xi � xj j;hÞ

XNold

i¼1
Ui;oldM04ðj xi � xj j;hÞ; ð17Þ
where Vnew ¼ h3 is the volume of the new particle.
After remeshing the new regularized particles are ready to be advected with the flow field. We note that this method does

not detract from the Lagrangian character of the method as the remeshing step is only seen as a regularization step for the
particle locations that are always advected by the flow map.

3.2.1. Particle derivative approximations
Particle approximations of the derivative operators can be constructed through their integral approximations. This can be

achieved by taking the derivatives of Eq. (7) as convolution and derivative operators commute in unbounded or periodic do-
mains. This approximation is often employed in SPH [35] where derivatives of a field quantity U on a particle p are approx-
imated in a conservative form as
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o
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U
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where vq is the volume of particle q. The normalization values nd;1;nd;2 of o
oxi

f�ðxÞ ¼ nd;1
o

oxi
f�ðxÞ and o

oxixj
f�ðxÞ ¼ nd;2

o
oxixj

f�ðxÞ are

chosen such that the corresponding non-zero moment condition [13] is satisfied. The kernel of Eq. (14) has its first three
derivatives continuous allowing a smooth approximation of the spatial derivatives of UðxÞ. The computation of the right
hand side of the ODEs employs these formulas for the computation of derivatives as defined in Eqs. (1)–(3). An alternative
formulation involves the development of integral operators that are equivalent to differential operators [13] as they were
first introduced for the integral approximation of the Laplacian [11] in the diffusion equation.

3.3. An immersed boundary method for remeshed SPH

In rSPH-IB, (Fig. 1), a forcing term f is added to the momentum equation (Eq. (2)) such that the no-slip condition is sat-
isfied on the boundary.
q
Du
Dt
¼ � 1

M2c
rpþ 1

Re
r � sþ f : ð20Þ
We approximate the material derivative by a differential quotient:
qi
uiþ1 � ui

Dt
¼ � 1

M2c
rpi þ

1
Re
r � si þ fi ð21Þ
Solving for fi and assuming we reach the desired velocity within this time step (uiþ1 ¼ udesired) yields
fi ¼ qi
udesired � ui

Dt
� � 1

M2c
rpi þ

1
Re
r � si

 !
: ð22Þ
The forcing term f acts locally on the boundaries where a no-slip condition is imposed and the velocity udesired is known. We
note that for the simulations past stationary boundaries, conducted in this study, the dominant contribution (90%) to the
forcing term is due to the first term of Eq. (22), ‘‘correcting” the spurious velocity field at the boundary.

The boundary is described by boundary points associated in turn with an impact zone in the flow domain as determined
by the particle-mesh interpolations necessary for the transfer of the forcing term between the fluid and the body (Fig. 1). We
employ a kernel based on B-Splines for a dirac delta approximation of the forcing term f. We rely on particle-mesh and mesh-
particle interpolations, similar to those employed for remeshing in order to transport quantities between the fluid particles
and the boundary.

Our implementation involves the separation of the forcing term into two parts:
fi ¼ qiðfip þ fibÞ ð23Þ

fip ¼
�ui

Dt
� 1

qi
� 1

M2c
rpi þ

1
Re
r � si

 !
ð24Þ

fib ¼
udesired

Dt
ð25Þ
Particle Immersed Boundary Method. The immersed boundary is discretized using boundary points that can only impact flow particles within the
support.
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The rSPH-IB method consists the following steps:

1. Evaluation of the first part of the forcing term fip on the particle
2. Interpolation of fip from the particles onto the boundary points via mesh.
3. Evaluate forcing term fi on the boundary points by adding fib

4. Interpolation of forcing term f from the boundary points to the particles via mesh.
5. Evolving particles according to the governing equations including forcing term f.

This approach tends to exhibit small scale oscillations in the pressure profile at complex boundaries. These oscillations
can be limited by the adjustment the density in the vicinity of the body. In this context, the ghost particles reside at the
boundary and their density is here chosen to be the averaged density of the neighboring fluid particles within their support.

3.4. Particle equations

The particle position xp, mass mp, volume vp, and velocity component ui;p evolve by the following system of ordinary dif-
ferential equations derived from Eqs. ((1)–(3))
dxp

dt
¼ up

dmp

dt
¼ 0

dvp

dt
¼ hr � uipvp

dui;p

dt
¼ vp

mp
� 1

M2c
hop
oxi
ip þ

1
Re
hosij

oxj
ip

 !
þ fi;p ð26Þ
where h}ip denotes the derivative approximation on a particle p (cf. Eq. (18)) and
osij

oxj

� �
p

¼ l o2ui

ox2
k

* +
p

þ 1
3

o2ul

oxioxl

* +
p

0
@

1
A ð27Þ

pp ¼
mp

vp
T0 ð28Þ
In the present study, the Laplacian approximation o2ui
ox2

k

� �
p

is evaluated using the particle strength exchange approach [11].* +

o2ui

ox2
k p

¼
X

p

vpðui;p � ui;qÞr2f�ðxq � xpÞ ð29Þ

f� ¼
15
��3p

1

j xj10 þ 1
ð30Þ
The second order kernel f� was successfully applied in simulations of diffusion in complex geometries [47].
The interface between the body and the fluid is captured using the Particle Level Set Method [21,20]. The level set func-

tion represents the signed distance function to the interface. The particles carry the level set information as a scalar attribute
Up that remains constant during the time integration:
dUp

dt
¼ 0 ð31Þ
We reinitialize the level set value based on the prescribed deformation of the geometry after every remeshing to maintain
the signed distance property. The exact knowledge of the body shape allows the reinitialization of the level set function with
its analytical value. We note that the use of the Level Set formulation enables the extension of the method to complex
deforming geometries that may even undergo topological changes that is of interest to virtual surgery applications.

The inlet and outlet boundary conditions are imposed by using image particles that have similar physical properties as
the flow particles. The boundary particles interact with the flow particles such that the boundary conditions are satisfied.
The no-slip boundary condition on the body surface is handled by the proposed particle Immersed Boundary Method.

The implementation is embedded into the framework of the Parallel Particle-Mesh Library (PPM) [47] to perform large-
scale simulations on massively parallel computer architectures.

4. Results

We implement the proposed rSPH-IB method on simulations of several benchmark flow problems, and present results
such as drag coefficient and vorticity isosurfaces. We discuss the advantages and drawbacks of the present method and
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we demonstrate its capabilities in capturing flows past unsteady deforming geometries in simulations of flows past a self-
propelled anguilliform swimmer.

The flows are characterized by their Reynolds and Mach numbers as defined in Section 2. The drag and lift coefficient are
defined as
Fig
ðCd;CLÞ ¼
ðFD; FLÞ

0:5qU2A
; ð32Þ
where FD; FL, demote the drag and lift force respectively on the body and A denotes the reference area. The Strouhal number
is defined as the dimensionless frequency of the shedding vortices
St ¼ fd
U
; ð33Þ
where f is the vortex shedding frequency, obtained using the Fast Fourier Transform of the lift coefficient.
In order to perform effectively incompressible simulations, we have kept the Mach number to a minimum. On the other

hand, the low Mach number dictates a small time step for integrating the governing equations. We have chosen the Mach
number empirically so as to have a compromise between these two objectives.

4.1. Poiseuille flow

In order to verify the capability of the present method to capture flows past solid boundaries we consider first the Poiseu-
ille flow. We note that this flow is a rather trivial example, in the context of grid based methods, but serves to demonstrate
that the proposed particle-mesh framework allows for a straightforward simulation of such flows. The 2D simulation domain
was considered to be a unit square with periodic boundary condition at the inlet/outlet boundary (x = 0, x = 1) and no-slip
conditions at the plates (y = 0, y = 1). We consider a fluid density with an initial density of q ¼ q0 ¼ 1 at a Reynolds number
of Re ¼ 100 and a Mach number of M ¼ 0:5. The fluid is initially at rest and accelerated by a constant pressure gradient of
0.001. We employ a 2nd order Runge Kutta scheme with a time step of dt ¼ 0:0005 in all cases. For the error analysis the
maximal difference in the velocity profile to the analytical solution is evaluated when the profile becomes stationary at time
T ¼ 70. The error normalized by the maximal velocity is shown in Fig. 2. The error analysis shows that the present method
exhibits second order accuracy in space.

4.2. Flow past a cylinder

We present simulations of flow past a cylinder for various Reynolds numbers using the proposed rSPH-IB in order to dem-
onstrate the capability of the method to capture flows past non grid conforming boundaries and to compare the results of our
simulations with the related, benchmark experimental and computational investigations [19,26,32,38,45,48,50].

We use a 4th order Runge Kutta scheme for time integration with constant time step of Dt ¼ 0:001. The domain size is set
to 15d� 30d where d is the diameter of the cylinder. The Mach number M is 0:05 The solution is remeshed after every time
step. A particle spacing of h ¼ 0:078d for Re ¼ 100 and h ¼ 0:052d for Re ¼ 1000 is employed in the reported simulations. The
fluid is initially at rest and accelerated by a small artificial force until the desired inlet velocity is reached to avoid the devel-
opment of pressure waves at the boundary. The shedding is induced by a perturbation of the inlet velocity in the lateral
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. 2. Poiseuille flow: L1� error velocity of the particle Immersed Boundary Method (rSPH-IB) compared to second order scaling (dashed line).
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direction as described by Ploumhans [44]. Fig. 3 shows the pressure coefficient, the vorticity and the forcing term along the
boundary for three resolutions. In the region of high vorticity a high resolution is required to capture the boundary effects.
This region also reflects a high forcing term. Furthermore we note the correlation of the forcing term with the the pressure
gradient and the wall vorticity. Using Richardson’s extrapolation for the Euclidian norm of the wall vorticity we find that the
method converges with an order of 1.82.

Figs. 4 and 5 shows the vorticity field at Re ¼ 100 and Re ¼ 1000 respectively. These vorticity fields match qualitatively
well with the respective vorticity fields obtained via Finite Element solutions by Singh et al. [48].

Fig. 6 shows the variation of the drag coefficient with the Reynolds number. The simulation results of the rSPH-IB
method are compared with experimental results [45] and incompressible flow computations. We observe that the drag
coefficient and Strouhal frequency values from present computations match well the experimental values for Re < 200
Fig. 4. Flow past a cylinder at Re ¼ 100. Contour levels of the vorticity contours at (�20;�15;�10;�7:5;�5;�2:5).



Fig. 5. Flow past a cylinder at Re ¼ 1000. Contour levels of the vorticity contours at (�20;�15;�10;�5).
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and previous simulation results as listed on Table 1. Beyond Re ¼ 180 the wake flow undergoes three-dimensional tran-
sitional instabilities. For Re > 200 the drag coefficient and the Strouhal number are overpredicted by the two-dimensional
computations.

Fig. 7 shows the pressure coefficient of the time averaged flow along the cylinder surface for Re ¼ 100 compared to the
result of Park et al. [38]. The angle h is measured clockwise from the front stagnation point of the cylinder. The pressure
coefficient Cp agrees well with the results of Park et al. [38]. The pressure field is noisy for angles 10� < h < 50� due to
unresolved pressure waves in the compressible fluid.

Fig. 8 shows that the computational cost of the method scales linearly with the number of particles.
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Fig. 6. Flow past a cylinder: Time averaged drag coefficient of rSPH-IB (circles) versus Reynolds number in comparison with experimental data (solid line,
taken from Ref. [45]), a Spectral Method (dashed line, taken from Ref. [48]) and a FEM solution (crosses) [48].

Table 1
Flow past a cylinder: comparison with previous simulations and experiments

Re ¼ 100;D ¼ 0:2 Drag coefficient Strouhal number

rSPH-IB 1.38 0.162
Henderson [19] 1.35 –
Park et al. [38] 1.33 0.165
Silva et al. IBM [32] 1.39 0.162
Singh et al. FEM [48] 1.41 0.164
Kim et al. FV IBM [26] 1.33 0.165
Wieselberger (Exp.) taken from Ref. [45] 1.45 –
Williamson (Exp.) [50] – 0.165
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4.3. Flow past a sphere

In order to assess the capability of the present method to simulate flows past three-dimensional geometries we simulate
the flow past a sphere at M ¼ 0:1 and Re ¼ 100 and Re ¼ 300. Wakes of incompressible fluid behind spheres are observed to
be steady for Reynolds numbers below 270. Above this limit vortices break off and are periodically shed to form chain linked
vortex loops. Table 2 shows that the drag and lift coefficient of the rSPH-IB method compare well with the results of simu-
Table 2
Flow past a sphere: Comparison with previous simulations

Re ¼ 100 Drag coefficient Lift coefficient Strouhal number

rSPH-IB (M=0.1) 1.15 – –
Fornberg [16] 1.09 – –
Kim et al. FV IBM [26] 1.09 – –
Fadlun et al. [14] 1.08 – –

Re ¼ 300
rSPH-IB (M =0.1) 0.71 0.062 0.133
Johnson and Patel [23] 0.66 0.069 0.137
Kim et al. FV IBM [26] 0.66 0.067 0.134
Ploumhans et al. [44] 0.68 0.066 0.137



Fig. 9. Flow past a sphere at Re ¼ 300. The vortices behind the sphere are visualized using the k2 method [22]. The color represent the local flow velocity.

Table 3
Falling sphere: Convergence study of the falling velocity

Particle spacing (h) Falling velocity Time step Dt Falling velocity
(Dt ¼ 0:001) (t = 10) (h ¼ 1=16) (t = 2)

1/8 1.02 0.004 0.602
1/16 0.95 0.002 0.592
1/32 0.93 0.001 0.596
Johnson et al. [23] 1.00 0.0005 0.595
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lations using incompressible fluids. The domain size is 10d� 10d� 15d, the particle spacing h ¼ 0:052d where d is the diam-
eter of the sphere. The spacing of the boundary points is in average the same. The time integrator is Runge Kutta 4 using a
time step of Dt ¼ 0:001. Fig. 9 shows the three-dimensional vorticity structure at Re ¼ 300. The surface of the vortices is
identified by the k2 method of Jeong and Hussain [22]. At Re ¼ 300 the flow is unsteady and the vortices shed asymmetri-
cally. This flow behavior matches with the results of Johnson and Patel [24]. The agreement in the flow structure, as well as in
the drag and lift coefficients indicate that the present method accurately captures the three-dimensional vorticity field.

4.4. Falling sphere

As a first test of flow-structure interaction we consider the problem of a falling sphere. We consider a rigid sphere of den-
sity qs ¼ 1:041 > q0 at Reynolds number Re ¼ 100 and at Mach number of M ¼ 0:25. The sphere is released from rest and
accelerates until it reaches its asymptotic falling velocity. The sphere diameter d is set to d ¼ 1 and the gravity g ¼ 20.
The size of the domain is set to 6� 20� 6, the time integration is Runge Kutta 2nd order with a time step of Dt ¼ 0:001.
Remeshing is applied every time step. An asymptotic falling velocity of U ¼ 0:95 is reached at time t ¼ 10 using a particle
spacing of 1=16. Table 3 summarizes the results of the falling sphere. This velocity of the falling sphere is in good agreement
with the results from incompressible simulations reported by Johnson and Patel [23]. We note that by refining in space and
time the falling velocity deviates from the reference value an effect that may be attributed to the compressibility of the flow
in the present simulations. The computational time for one timestep using 750,000 particles is 28s on 2 CPUs of 2.2 GHz
Opteron processors.
5. Simulation of anguilliform swimming

We present two and three-dimensional simulations of the proposed rSPH-IB methodology in flows past self-propelled
anguilliform swimmers. Anguilliform swimmers, such as the eel and the lamprey, propel themselves by propagating curva-
ture waves along their body and they are considered as highly efficient swimming organisms. The results are compared with
related incompressible flow simulations using finite volume simulations and body-conforming grids presented by Kern et al.
[25].

5.1. Fish geometry

The motion of the body is described by the two-dimensional deformation of the mid-line based on the simulations of Car-
ling et al. [4]. The lateral displacement of the mid-line ysðs; tÞ in a local system is defined as
ysðs; tÞ ¼ 0:125
s=Lþ 0:03125

1:03125
sinð2pðs=L� t=TÞÞ ð34Þ
where s is the arc length along the mid-line of the body (0 6 s 6 L), t is the time, T the periodic time.
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The three dimensional body of the swimmer is described by spatially varying ellipsoid cross sections. The length of the
two half axis wðsÞ and hðsÞ are defined as
Fig. 10.
respect
wðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2whs� s2

p
0 6 s 6 sb

wh � ðwh �wtÞ s�sb
st�sb

� �2
sb 6 s 6 st

wt
L�s
L�st

st 6 s 6 L

8>>><
>>>:

ð35Þ

hðsÞ ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s� a

a

� �2
r

ð36Þ
where wh ¼ sb ¼ 0:04L, st ¼ 0:95L, wt ¼ 0:01L, a ¼ 0:51L and b ¼ 0:08L. We apply a no-slip boundary condition on the surface
of the body. The mid-line of the body is embedded into a non-inertial ðx0; y0Þ-system where the center of mass of the deform-
ing body remains and the total angular momentum is conserved. The fluid-body interactions are computed in the inertial
system (x,y,z) considering the swimmer as a rigid body. Thus, the motion of the body in the global system ðO; x; y; zÞ is de-
scribed by the Newtons equations of motion:
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m€xc ¼ F; ð37Þ
_Iz _uc þ Iz €uc ¼ Mz; ð38Þ
where m is the total mass of the immersed body, xc represents the position of the center of mass, uc the global angle with
respect to the initial position, F and Mz are the fluid force and yaw torque acting on the body surface. The time-dependency of
the inertial moment _Iz about the yaw axis is also considered although it is small compared to the inertial moment itself.

We set the viscosity of the fluid to be l ¼ 1:4� 10�4, the body length L ¼ 1, the density q0;fluid ¼ qbody ¼ q ¼ 1 resulting in
a Reynolds number of 3850 based on the final swimming speed.

The fluid forces acting on the body are shown as non-dimensional coefficients Ck ¼ Fk=ð0:5qU2
0SÞ and C? ¼ F?=ð0:5qU2

0SÞ
parallel and lateral to the swimming direction, where S represents the circumference in two-dimensions and the surface of
the body in three dimensions. The yaw torque is measured in the non-dimensional coefficient CM ¼ Mz=ð0:5qU2

0LSÞ.

5.2. Equations of motion for the anguilliform swimmer

The position xc and the angle uc of anguilliform swimmer evolve by the following set of equations based on Eqs. (37) and
(38)
dxc

dt
¼ uc;

duc

dt
¼ F

m
;

duc

dt
¼ xc; ð39Þ

dxc

dt
¼ Mz � _Izxc

Iz
;

where uc denotes the velocity of the swimmer and xc the angular velocity. We solve this set of equations simultaneously
with the particle equations Eqs. ((26)–(31)) that describe the fluid behavior.
Vorticity field of the two-dimensional swimmer using rSPH-IB (left) and reference solution of Kern [25] (right) for one swimming cycle at time t,
T, t + 0.5T, and t + 0.75T.
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5.3. Computational setup

We integrate the Eqs. (26)–(31), and (39) with respect to time using a explicit 4th order Runge-Kutta scheme with time
step of Dt ¼ 0:001. The particles are distributed uniformly in the domain and remeshed every time step. We consider the
domain as an noninertial coordinate system that moves with the opposite x1-component of the fish velocity such that x1-
position of the fish is constant in the noninertial coordinate system. Thus, we accelerate the fluid in x1-direction by the oppo-
site force that acts on the swimmer and the swimmer remains on its x1-position. The size of the domain is 4� 2 in two
dimensions and 3� 2� 2 in three dimensions. This domain size is tested to be sufficiently large to make negligible the influ-
ence of the boundary. The simulations are based on 1:3� 105 particles in two dimensions, and 25� 106 particles in three
dimensions.
Fig. 13. Zoom of the vorticity field at the tail of the two-dimensional swimmer using rSPH-IB (left) and reference solution of Kern [25] (right) for one
swimming cycle at time t, t + 0.25T, t + 0.5T, and t + 0.75T.



5.4. Results

5.4.1. Two-dimensional anguilliform swimmer
We present a comparison in the two dimensional flows with the work of Kern et al. [25] in terms of the swimming

velocity, as well as forces and torque acting on the swimmer. The swimmer accelerates from rest to an asymptotic
mean forward velocity of Uk ¼ 0:54 in about seven undulation cycles. The velocity varies slightly during a cycle while
the lateral velocity U? has an amplitude of 0.04. The time history of the longitudinal and lateral velocity agrees very
well with the incompressible solution (Fig. 10). The velocity differs the most at time 1 < t < 4 where the density vari-
ations are larger than at later time steps. The higher density variations lead to higher pressure variations resulting in
larger forces acting on the swimmer. The incompressible solution is approximated sufficiently with a Mach number of
M ¼ 0:1.

The longitudinal and lateral forces and the torque (Fig. 11) agree very well with the incompressible solution. The force
and moment coefficient Ck;C? and CM converge to oscillation modes with zero mean and a constant amplitude of 0.03,
0.04 and 0.03, respectively. After the body has accelerated to its mean swimming velocity the forces acting on the body have
a zero mean. The computation of one time step took 10s on 8 processors for 800,000 particles.
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The compressibility of the fluid causes unresolved pressure waves resulting in high frequent noise in the flow structure. A
second order filter [43] is applied to the mass and the momentum during the remeshing process every 100 steps to suppress
the small scale pressure waves in the range of the Nyquist frequency. We note that Kern et al. [25] applied a low pass filter to
the fluid force F and the torque Mz in order to stabilize the simulation of the incompressible flow. In the present method the
flow-structure is stable and we can omit the use of such a low pass filter.

Figs. 12 and 13 show the vorticity field of the swimmer during one period at the final swimming speed along with a zoom
at the tail. The main differences in the vorticity field result from the fact that the particle solution is uniformly resolved,
whereas the finite volume solution involves an adaptive re-gridding. Thus, the vorticity shedding at the boundary layer is
better resolved in the finite volume solution.

The tail beat amplitude is A ¼ 0:16 and the corresponding Strouhal number is St ¼ 0:59. The wave velocity is V ¼ 0:73,
which results in a slip of Uk=V ¼ 0:74.

5.4.2. Three-dimensional anguilliform swimmer
In three dimensions the forces acting on the fish compare well with the finite volume solution (Fig. 15). The net force and

moment coefficient Ck;C? and CM oscillate with a mean of zero and amplitudes of 0.04, 0.06 and 0.03, respectively. Fig. 14
shows that the final swimming speed in the particle solution (uSPH ¼ 0:448) is 12% higher than the velocity reported in the
finite volume solution (uFV ¼ 0:402). This result is consistent with the drag values reported in the flow past a sphere
at Re ¼ 300 that were found to differ approximately 10% from the results of grid based methods (Table 2). The forward
velocity Uk oscillates with an amplitude of 0.01. The lateral velocity U? has a zero mean and an amplitude of 0.03
(Fig. 14). The wave velocity V ¼ 0:73 is equal to the two dimensional case resulting in the slip of Uk=V ¼ 0:61. The tail beat
amplitude is determined to be A ¼ 0:15 with St ¼ 0:67.

The oscillating tail of the swimmer sheds vortex rings in the wake with the frequency of the swimming motion (Figs. 16–
18). Both, the particle and the finite volume solution show the vorticity shed in every half tail beat cycle that breaks up into
two vortices resulting in near wake lateral jets. The vorticity field of particle solution appears smoother and shows less
small-scale structures. The vortex rings are less recognizable. As the finite-volume grid feature a four times higher resolution
Fig. 16. Vorticity field of the three-dimensional swimmer using rSPH-IB (left) and reference solution of Kern [25] (right) for one swimming cycle at time t,
t + 0.25T, t + 0.5T, and t + 0.75T.



Fig. 17. Zoom of the vorticity field at the tail of the three-dimensional swimmer using rSPH-IB (left) and reference solution of Kern [25] (right) for one
swimming cycle at time t, t + 0.25T, t + 0.5T, and t + 0.75T.
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in the boundary layer of the tail than the particle solution, the absence of the small-scale structures in the boundary layer can
be associated with a lack of resolution. The small vorticity structures between the shedding vortex pair result are mainly
spurious and result from the highly dynamic refinement of the finite volume grid. The computation of one time step took
70s on 32 processors for 13 million particles.

6. Conclusion

We presented a novel particle method (rSPH-IB) for simulations of flow-structure interactions involving unsteady
deforming geometries. The present method combines a Level Set technique for the implicit representation of the body, along
with a remeshed Smoothed Particle Hydrodynamics solver for the simulation of the flow field and an Immersed Boundary
method to enforce the no-slip boundary condition. The present method relies on the remeshing of the Lagrangian particles



Fig. 18. Isosurface of the vorticity magnitude (left) and vortices visualized by the k2-method (right) of the three-dimensional swimmer using rSPH-IB for
one swimming cycle at time t, t + 0.25T, t + 0.5T, and t + 0.75T.
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on a rectangular grid. This remeshing does not detract from the adaptive character of the method as the particles adapt to
resolve the flow field and at the same time it ensures the convergence of the method when the particles get distorted by the
flow map. The efficiency and accuracy of the method, as well as comparison with related methodologies, is demonstrated in a
number of two and three dimensional benchmark problems and the method is shown to be well capable in solving problems
of fluid-structure interaction. The simplicity of the method in handling complex boundaries makes it suitable for large scale
simulations, employing millions of particles for the simulation of complex movement of flexible structures as they appear for
example in anguilliform swimming. A drawback of the present method is the need to account for the compressibility of the
flow. Fast motions of the boundary in high Reynolds number flows result in pressure waves in the fluid that restrict the time
step and can lead to numerical problems when not properly resolved. The use of artificial damping terms may help to rem-
edy the situation much as it is the case in artificial compressibility methods. Another limitation of the present rSPH-IB for-
mulation is the use of a uniform particle size throughout the computational domain. We are currently addressing this
inefficiency of the method by incorporating multi-resolution particle techniques [2,3] and developing its implementation
on GPUs following related work on Vortex Methods [46]. The present method allows for simulations past complex deforming
geometries, while the level set description of the surface enables flow simulations even past bodies that undergo topological
changes. We pursue applications of this method to other problems related to swimming and flying in nature, as well as to
simulations of flow-structure interaction as they pertain to virtual surgery.
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